Lecture 10

Surface Modification techniques

Surface modification techniques

- Chemical Vapor Deposition (CVD)
- Spin and dip coating
- Evaporation
 Ion plating, e.g. TiN
- Sputtering
- Molecular Beam Epitaxy (MBE)
- Self-Assembled Monolayers
- Physisorbed Polymeric layers
- Polymerization on the surface. Plasma polymerisation

- Deposition of homogeneous layers via gas reaction on a heated surfaces
- Commonly used for deposition of poly-Si, SiO₂, SiNx, diamond etc.

- CVD reactor types:
 - Atmospheric-pressure CVD (APCVD), used mainly for thick oxides
 - fast deposition, simple, high throughput
 - · mass-transport limited
 - · poor uniformity, step coverage. Low purity.
 - Low-pressure CVD (LPCVD), P=1-10 mTorr, used for polysilicon, dielectric layers,
 - · excellent purity, uniformity and step coverage
 - · low deposition rates
 - surface reaction rate limited
 - Metal Organic CVD (MOCVD), used for optical technology and some metal deposition (W, Cu)
 - Advantages.: Highly flexible—> can deposit semiconductors, metals, dielectrics
 - Disadvantages: HIGHLY TOXIC!, Very expensive source material. Environmental disposal costs are high.
 - Plasma assisted deposition (plasma can lower required temperatures)
 - · Advantages.: Uses low temperatures necessary for rear end processing.
 - Disadvantages: Plasma damage typically results.
 - Laser/Ion beam assisted deposition

- Pyrolysis
- Reduction
- Oxidation
- Compound formation
- Disproportionation
- Reversible transfer

 Pyrolysis – chemical decomposition or change induced by heat silane amorphous

$$\begin{array}{ll} \text{Silane} & \text{amorphous} \\ \text{SiH}_{4(g)} & \rightarrow \text{Si}_{(s)} + 2\text{H}_{2(g)} & (650^{\circ}\text{C}) \\ \text{Ni(CO)}_{4(g)} & \rightarrow \text{Ni}_{(s)} + 4\text{CO}_{(g)} & (180^{\circ}\text{C}) \\ \text{Ni carbonvl} & \end{array}$$

 Reduction — any process in which electrons are added to an atom or ion (as by removing oxygen or adding hydrogen); always occurs accompanied by oxidation of the reducing agent

$$\begin{array}{c} \text{SiCl}_{4(g)} + 2H_{2(g)} \longrightarrow \text{Si}_{(s)} + 4\text{HCl}_{(g)} & (1200^{\circ}\text{C}) \\ \text{WF}_{6(g)} + 3H_{2(g)} \longrightarrow W_{(s)} + 6\text{HF}_{(g)} & (300^{\circ}\text{C}) \\ \text{MoF}_{6(g)} + 3H_{2(g)} \longrightarrow \text{Mo}_{(s)} + 6\text{HF}_{(g)} & (300^{\circ}\text{C}) \end{array}$$

Oxydation

$$2AlCl_{3(g)} + 3H_{2(g)} + 3CO_{2(g)} \rightarrow$$

 $\rightarrow Al_2O_{3(s)} + 3CO_{(g)} + 6HCl_{(g)}$ (1000°C)

Compound formation

hard surface coatings
$$SiCl_{4(g)} + CH_{4(g)} \rightarrow SiC_{(s)} + 4HCl_{(g)} \qquad (1400^{\circ}C)$$

$$TiCl_{4(g)} + CH_{4(g)} \rightarrow TiC_{(s)} + 4HCl_{(g)} \qquad (1000^{\circ}C)$$

$$BF_{3(g)} + NH_{3(g)} \rightarrow BN_{(s)} + 3HF_{(g)} \qquad (1100^{\circ}C)$$

MOCVD:

$$(CH_3)_3Ga_{(g)} + AsH_{3(g)} \rightarrow GaAs_{(s)} + 3CH_{4(g)}$$
 (650 - 750°C)

 Disproportionation – a chemical reaction in which a single substance acts as both oxidizing and reducing agent, resulting in the production of dissimilar substances

$$2GeI_{2(g)} \longleftrightarrow Ge_{(s)} + GeI_{4(g)}$$

$$\leftarrow 600 \text{ C}$$

lower-valent state is more stable at high T

Al, B, Ga, In, Si, Ti, Zr, Be, Cr can be deposited this way

Reversible transfer

$$As_{4(g)} + As_{2(g)} + 6GaCl_{(g)} + 3H_{2(g)} \leftrightarrow 6GaAs_{(s)} + 6HCl_{(g)}$$

$$\leftarrow 850 \text{ C}$$

Typical reaction for CVD

Product	Reactants	Deposition temperature, °C
Silicon dioxide	$SiH_4 + CO_2 + H_2$	850-950
	$SiCl_2H_2 + N_2O$	850-900
	$SiH_4 + N_2O$	750-850
	$SiH_4 + NO$	650-750
	$Si(OC_2H_5)_4$	650-750
	$SiH_4 + O_2$	400-450
Silicon nitride	$SiH_4 + NH_3$	700-900
	$SiCl_2H_2 + NH_3$	650-750
Plasma silicon nitride	$SiH_4 + NH_3$	200-350
	$SiH_4 + N_2$	200-350
Plasma silicon dioxide	$SiH_4 + N_2O$	200-350
Polysilicon	SiH ₄	575-650

Example: SiO₂ deposition

$$SiH_4 + O_2 \xrightarrow{450^{\circ}C} SiO_2 + 2H_2$$

 $Si(OC_2H_5)_4 \xrightarrow{700^{\circ}C} SiO_2 + by - products$

- TEOS gas (Tetraethylorthosilane)
- process condition: T=700°C, P=30 Pa (mean free path ~100μm)
- sometimes O₃ is added to reduce the reaction temperature (formation of reactive radicals at ~200°C)

- Example: CVD diamond film deposition
- CVD diamond films:
 - hard coating
 - low friction coefficient
 - chemicall inert
 - optically transparent
 - can be doped to become conductive

Chemistry: at 800°C

$$H_{2} \longrightarrow 2H^{*}$$

$$CH_{4} + H^{*} \longrightarrow CH_{3}^{*} + H_{2}$$

$$\sim CH + H^{*} \longrightarrow \sim C^{*} + H_{2} \swarrow$$

$$\sim C^{*} + CH_{3}^{*} \longrightarrow \sim CCH_{3}$$

carbon seed layer on the surface required (e.g. evaporated)

on the surface

Metal Organic Chemical Vapor Deposition (MOCVD)

The idea

- Many materials that we wish to deposit have very low vapor pressures and thus are difficult to transport via gases.
- One solution is to chemically attach the metal (Ga, Al, Cu, etc...) to an organic compound that has a very high vapor pressure.
- The organic-metal bond is very weak and can be broken via thermal means on wafer, depositing the metal with the high vapor pressure organic being pumped away.

Disadvantages

 Care must be taken to insure little of the organic byproducts are incorporated. Carbon contamination and unintentional hydrogen incorporation are sometimes a problem.

Epitaxy

 Epitaxy – formation of a single crystalline film on top of another crystalline material

Tilted-layer epitaxy

Atomic layer epitaxy

Self-limiting growth, one layer at a time:

- Popular for II-IV oxides
- Electrochemical ALE possible

Kim et al, API

- Several type of monolecules (thiols, silanes, isocianides, amines, organic acids etc.) are capable of forming SAMs on specific surfaces
- The process is governed by
 - chemical bond formation between the head group and the surface
 - vdWaals interaction between the mesogenic groups
 - interaction between the tail groups

Silanes

Silanes react with silanol (~SiOH) groups on the surface

 Water competes with the ~OH groups on the surface causing silanes polymerization to polysiloxane network and should be excluded from the reaction.

Silanes tips and tricks (from Gelest, Inc)

A W

mainstream approach

better film uniformity

Dipodal Silane

better adhesion and hydrolytic stability

Silanes deposition (from Gelest, Inc)

- Deposition from solution
 - Dipping;
 - Spin coating:
 - Spray coating

Common lab process: Deposition from anhydrous solutions typ. 2-5% of chlorosilanes, methoxysilanes, ethoxysilanes in abs. ethanol, toluene etc. Pre-drying of substrates is required. Post cure at 110C is desirable.

Vapour phase deposition

• SAM growth models:

Physisorption of polymers

- Macromolecules tend to adsorb irreversibly to the surfaces due to large amount of "bonds" formed (even if the single "bond" energy is <kT)
- Polyelectrolytes: charged polymers, e.g. DNA, polyethylenamine, polysulfonate etc.)

Electrostatic Layer-by-Layer Deposition

- polyelectrolytes
 - strong fully dissociated, constant charge in the solution in the full range of pH

Poly(styrene sulfonate) (PSS)

- weak dissociated within the limited range of pH
- polyampholytes sign of electrostatic charge can be reversed by varying pH (e.g. proteins)

Polyethilenimine (PEI)

Copolymer of acrylic acid and dymethilaminoethyl methacrylate

Physisorption of polymers

Adsorption of polyelectrolyte depends on pH and ionic strength

Example: deposition of DNA on mica

Physisorption of polymers

Layer-by-Layer assembly of polyelectrolytes

Electrostatic Layer-by-Layer Deposition

 LbL process works through sequential immersion in polyanion and polycation solutions

 any substrate with surface charge is suitable! (e.g. mica, silicon, glass, colloids etc.)

Electrostatic Layer-by-Layer Deposition

Morphology :

- non-linear growth, usually starts with islands on charged surface defects
- depends on the conformation of the polymeric chain (e.g. coil – flatter monolayers vs globule – roughter monolayers)

Dip-Pen Nanolithography

 Molecules are first adsorbed on an AFM tip and than transferred to the substrate ("inversed LB")

Polymerization on the surfaces

- Polymerization approaches:
 - "Grafting-to": adsorption or chemical coupling of a polymerized chain to the surface. Disadvantage: density is limited by the size of polymer coil;
 - "Grafting-from" or surface-initiated polymerization

Activation types: radical and living ionic (anionic or cationic).
 Living ionic gives better monodispercity, but sensitive to contamination

Plasma Polymerization

- substrate is placed in the chamber containing vapor of an organic monomer and a buffer gas
- in plasma, the monomer forms radicals that initiate polymerization
- polymeric layer on the surface usually has higher branching and cross/linking degree than a conventional polymer

Problems

End of chapter problems:

- 10.1
- 10.2
- 10.5